Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 31, 2026
-
Terminal lakes (without outflow) retain elements and compounds that reach them through fluvial, point source or atmospheric deposition. If the lake sediment is exposed, some of these chemicals could become toxic dust particulates. The Great Salt Lake (GSL) in Utah is a terminal lake that experienced record-low lake elevation in 2021-22, exposing vast areas of playa. Here, we used inductively coupled plasma mass spectrometry to analyze the environmental chemistry of GSL shallow sediment during historic lows in spring, summer, and fall of 2021. Contaminants at the subsurface interface are most able to influence diffusion into the water column and uptake by benthic biota. We focused our analysis on copper, thallium, arsenic, mercury, lead, and zinc, which have been historically deposited in this region and are toxic when at high concentrations. We compared records of regional mining activity to understand the current contamination and assess relevant spatial and temporal gradients. We also used two different extraction methods (EPA 3050b and NH4AcO at pH=7) that can distinguish “environmentally available” vs. tightly associated and less available fractions. We observed consistent concentration of copper across sites indicating a larger relative impact of atmospheric deposition, with some evidence indicating further impacts of point sources. Arsenic, on the other hand, is maintained at high levels in submerged sediments and is likely geologically- and fluvially- derived. Thallium and mercury fluctuate seasonally and correlate with lake elevation. Lead and zinc levels are relatively low in GSL sites compared with freshwater input sites, indicating the deep brine layer may sequester these heavy metals, preventing their release into the water column. Overall, the concentrations of most metals in GSL sediments have declined from historic highs. However, each contaminant has distinct sources, seasonality, mobility and transmission. Complete recovery (if possible) may require many more decades and individual remediation strategies.more » « less
-
Summary The non-muscle actomyosin cytoskeleton generates contractile force through the dynamic rearrangement of its constituent parts. Actomyosin rings are a specialization of the non-muscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components including non-muscle myosin II (NMMII), actin filaments (F-actin), and crosslinking proteins. However, it is unknown whether diverse actomyosin rings close via a single unifying mechanism. To explore how contractile forces are generated by actomyosin rings, we studied three instances of ring closure within the common cytoplasm of theC. elegansoogenic germline: mitotic cytokinesis of germline stem cells (GSCs), apoptosis of meiotic compartments, and cellularization of oocytes. We found that each ring type closed with unique kinetics, protein density and abundance dynamics. These measurements suggested that the mechanism of contractile force generation varied across the subcellular contexts. Next, we formulated a physical model that related the forces generated by filament-filament interactions to the material properties of these rings that dictate the kinetics of their closure. Using this framework, we related the density of conserved cytoskeletal proteins anillin and NMMII to the kinematics of ring closure. We fitted model rings to in situ measurements to estimate parameters that are currently experimentally inaccessible, such as the asymmetric distribution of protein along the length of F-actin, which occurs naturally due to differences in the dimensions of the crosslinker and NMMII filaments. Our work predicted that the role of NMMII varies across these ring types, due in part to its distribution along F-actin and motoring. Our model also predicted that the degree of contractility and the impact of ring material properties on contractility differs among ring types.more » « less
-
Summary Septins, a conserved family of filament-forming proteins, contribute to eukaryotic cell division, polarity, and membrane trafficking. Septins scaffold other proteins to cellular membranes, but it is not fully understood how septins associate with membranes. We identified and characterized an isoform ofCaenorhabditis elegansseptin UNC-61 that was predicted to contain a transmembrane domain (TMD). The TMD isoform is expressed in a subset of tissues where the known septins were known to act, and TMD function was required for tissue integrity of the egg-laying apparatus. We found predicted TMD-containing septins across much of opisthokont phylogeny and demonstrated that the TMD-containing sequence of a primate TMD-septin is sufficient for localization to cellular membranes. Together, our findings reveal a novel mechanism of septin-membrane association with profound implications for septin dynamics and regulation.more » « less
-
Free, publicly-accessible full text available December 1, 2026
-
This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.more » « less
An official website of the United States government
